Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78.414
Filtrar
1.
BMC Complement Med Ther ; 24(1): 157, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609946

RESUMO

BACKGROUND: Oral bacterial infections are difficult to treat due to emergence of resistance against antibiotic therapy. Essential oils are considered emerging alternate therapy against bacterial infections and biofilms. We investigated Citrus bergemia flower essential oil against oral pathogens. METHODS: The essential oil was analsyed using Gas Chromatography(GC-MS), in silico investigations, antioxidant, antimicrobial, antibiofilm and antiquorum sensing assays. RESULTS: Gas Chromatography analysis confirmed presence of 17 compounds including 1,6-Octadien-3-ol,3,7-dimethyl, 48.17%), l-limonene (22.03%) and p-menth-1-ol, 8-ol (7.31%) as major components. In silico analysis showed compliance of all tested major components with Lipinski's rule, Bioavailability and antimicrobial activity using PASS (prediction of activity spectrum of substances). Molecular docking with transcriptional regulators 3QP5, 5OE3, 4B2O and 3Q3D revealed strong interaction of all tested compounds except 1,6-Octadien-3-ol,3,7-dimethyl. All tested compounds presented significant inhibition of DPPH (2,2-diphenyl-1-picrylhydrazyl) (IC50 0.65 mg/mL), H2O2 (hydrogen peroxide) (63.5%) and high FRAP (ferrous reducing antioxidant power) value (239.01 µg). In antimicrobial screening a significant activity (MIC 0.125 mg/mL) against Bacillus paramycoides and Bacillus chungangensis was observed. Likewise a strong antibiofilm (52.1 - 69.5%) and anti-QS (quorum sensing) (4-16 mm) activity was recorded in a dose dependent manner. CONCLUSION: It was therefore concluded that C. bergemia essential oil posess strong antioxidant, antimicrobial and antibiofilm activities against tested oral pathogens.


Assuntos
Anti-Infecciosos , Infecções Bacterianas , Citrus , Óleos Voláteis , Antioxidantes/farmacologia , Peróxido de Hidrogênio , Simulação de Acoplamento Molecular , Óleos Voláteis/farmacologia , Anti-Infecciosos/farmacologia , Flores
2.
Arch Microbiol ; 206(5): 213, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38616201

RESUMO

Mulberry bacterial wilt disease, caused by Ralstonia pseudosolanacearum, is a devastating soil-borne disease in the silk-mulberry-related industry. In this study, through high-throughput sequencing, we compared the rhizosphere bacterial composition of the mulberry-resistant cultivar (K10) and susceptible cultivar (G12), confirming Bacillus as a genus-level biomarker for K10. Next, twelve Bacillus spp. isolates, derived from the rhizosphere of K10, were screened for their antagonistic activity against R. pseudosolanacearum. The isolate showing strong antagonism was identified as B. velezensis K0T24 and selected for further analysis. The fermentation supernatant of B. velezensis K0T24 significantly inhibited the growth of R. pseudosolanacearum (82.47%) and the expression of its pathogenic genes. Using B. velezensis K0T24 in mulberry seedlings also increased defense enzyme activities and achieved a control efficacy of up to 55.17% against mulberry bacterial wilt disease. Collectively, our findings demonstrate the potential of B. velezensis K0T24 in suppressing mulberry bacterial wilt disease.


Assuntos
Bacillus , Infecções Bacterianas , Morus , Bactérias , Bacillus/genética
3.
Int J Oral Sci ; 16(1): 30, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38622128

RESUMO

Bacterial resistance and excessive inflammation are common issues that hinder wound healing. Antimicrobial peptides (AMPs) offer a promising and versatile antibacterial option compared to traditional antibiotics, with additional anti-inflammatory properties. However, the applications of AMPs are limited by their antimicrobial effects and stability against bacterial degradation. TFNAs are regarded as a promising drug delivery platform that could enhance the antibacterial properties and stability of nanodrugs. Therefore, in this study, a composite hydrogel (HAMA/t-GL13K) was prepared via the photocross-linking method, in which tFNAs carry GL13K. The hydrogel was injectable, biocompatible, and could be instantly photocured. It exhibited broad-spectrum antibacterial and anti-inflammatory properties by inhibiting the expression of inflammatory factors and scavenging ROS. Thereby, the hydrogel inhibited bacterial infection, shortened the wound healing time of skin defects in infected skin full-thickness defect wound models and reduced scarring. The constructed HAMA/tFNA-AMPs hydrogels exhibit the potential for clinical use in treating microbial infections and promoting wound healing.


Assuntos
Infecções Bacterianas , Ácidos Nucleicos , Humanos , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Ácidos Nucleicos/farmacologia , Hidrogéis/farmacologia , Hidrogéis/química , Cicatrização , Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia
4.
J Colloid Interface Sci ; 665: 855-862, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38564949

RESUMO

Bacterial infections are the primary causes of infectious diseases in humans. In recent years, the abuse of antibiotics has led to the widespread enhancement of bacterial resistance. Concerns have been raised about the identification of a common treatment platform for bacterial infections. In this study, a composite nanomaterial was used for near-infrared II (NIR-II) photothermal antibacterial treatment. Red blood cell membrane was peeled and coated onto the surface of the Au/polydopamine nanoparticle-containing aptamer. The composite nanomaterials based on Au/polydopamine exhibit highest photothermal conversion capability. Moreover, these assembled nanoparticles can quickly enter the body's circular system with a specific capability to recognise bacteria. In vivo experiments demonstrated that the composites could kill bacteria from infected blood while significantly reducing the level of bacteria in various organs. Such assemblies offer a paradigm for the treatment of bacterial infections caused by the side effects of antibiotics.


Assuntos
Infecções Bacterianas , Indóis , Nanopartículas , Polímeros , Humanos , Antibacterianos/farmacologia , Infecções Bacterianas/tratamento farmacológico , Bactérias , Membrana Celular
5.
Sci Adv ; 10(15): eadl3262, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38598619

RESUMO

Contact lenses (CLs) are prone to adhesion and invasion by pollutants and pathogenic bacteria, leading to infection and inflammatory diseases. However, the functionalization of CL (biological functions such as anti-fouling, antibacterial, and anti-inflammatory) and maintaining its transparency still face great challenges. In this work, as a member of the MXenes family, vanadium carbide (V2C) is modified onto CL via a water transfer printing method after the formation of a tightly arranged uniform film at the water surface under the action of the Marangoni effect. The coating interface is stable owing to the electrostatic forces. The V2C-modified CL (V2C@CL) maintains optical clarity while providing good biocompatibility, strong antioxidant properties, and anti-inflammatory activities. In vitro antibacterial experiments indicate that V2C@CL shows excellent performance in bacterial anti-adhesion, sterilization, and anti-biofilm formation. Last, V2C@CL displays notable advantages of bacteria elimination and inflammation removal in infectious keratitis treatment.


Assuntos
Infecções Bacterianas , Lentes de Contato , Humanos , Antibacterianos/farmacologia , Anti-Inflamatórios , Bactérias , Lentes de Contato/microbiologia , Inflamação , Nitritos , Elementos de Transição , Água , Impressão
6.
Zhongguo Zhong Yao Za Zhi ; 49(3): 653-660, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621869

RESUMO

Quorum sensing system regulates the expression of genes related to bacterial growth, metabolism and other behaviors by sensing bacterial density, and controls the unified action of the entire bacterial population. This mechanism can ensure the normal secretion of bacterial metabolites and the stability of the biofilm microenvironment, providing protection for the formation of biofilms and the normal growth and reproduction of bacteria. Traditional Chinese medicine, capable of quorum sensing inhibition, can inhibit the formation of bacterial biofilms, reduce bacterial resistance, and enhance the anti-infection ability of antibiotics when combined with antibiotics. In recent years, the combination of traditional Chinese and Western medicine in the treatment of drug-resistant bacterial infections has become a research hotspot. Starting with the associations between quorum sensing, biofilm and drug-resistant bacteria, this paper reviews the relevant studies about the combined application of traditional Chinese medicines as quorum sensing inhibitors with antibiotics in the treatment of drug-resistant bacteria. This review is expected to provide ideas for the development of new clinical treatment methods and novel anti-infection drugs.


Assuntos
Infecções Bacterianas , Percepção de Quorum , Humanos , Percepção de Quorum/genética , Medicina Tradicional Chinesa , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias/genética , Biofilmes , Infecções Bacterianas/tratamento farmacológico
7.
BMC Infect Dis ; 24(1): 366, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561650

RESUMO

BACKGROUND: Diabetic foot ulcer (DFU) is one of the main chronic complications caused by diabetes, leading to amputation in severe cases. Bacterial infection affects the wound healing in DFU. METHODS: DFU patients who met the criteria were selected, and the clinical data were recorded in detail. The pus exudate from the patient's foot wound and venous blood were collected for biochemical analysis. The distribution of bacterial flora in pus exudates of patients was analyzed by 16S rRNA sequencing, and the correlation between DFU and pathogenic variables, pyroptosis and immunity was analyzed by statistical analysis. Then, the effects of key bacteria on the inflammation, proliferation, apoptosis, and pyroptosis of polymorphonuclear leukocytes were investigated by ELISA, CCK-8, flow cytometry, RT-qPCR and western blot. RESULTS: Clinical data analysis showed that Wagner score was positively correlated with the level of inflammatory factors, and there was high CD3+, CD4+, and low CD8+ levels in DFU patients with high Wagner score. Through alpha, beta diversity analysis and species composition analysis, Corynebacterium accounted for a large proportion in DFU. Logistics regression model and Person correlation analysis demonstrated that mixed bacterial infections could aggravate foot ulcer, and the number of bacteria was closely related to inflammatory factors PCT, PRT, immune cells CD8+, and pyroptosis-related proteins GSDMD and NLRP3. Through in vitro experiments, Corynebacterium inhibited cell proliferation, promoted inflammation (TNF-α, PCT, CRP), apoptosis and pyroptosis (IL-1ß, LDH, IL-18, GSDMD, NLRP3, and caspase-3). CONCLUSION: Mixed bacterial infections exacerbate DFU progression with a high predominance of Corynebacterium, and Corynebacterium promotes inflammation, apoptosis and pyroptosis to inhibit DFU healing.


Assuntos
Infecções Bacterianas , Diabetes Mellitus , Pé Diabético , Humanos , Pé Diabético/microbiologia , RNA Ribossômico 16S/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Bactérias , Inflamação , Supuração
8.
J R Soc Interface ; 21(213): 20240078, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38593842

RESUMO

Biofilms are responsible for most chronic infections and are highly resistant to antibiotic treatments. Previous studies have demonstrated that periodic dosing of antibiotics can help sensitize persistent subpopulations and reduce the overall dosage required for treatment. Because the dynamics and mechanisms of biofilm growth and the formation of persister cells are diverse and are affected by environmental conditions, it remains a challenge to design optimal periodic dosing regimens. Here, we develop a computational agent-based model to streamline this process and determine key parameters for effective treatment. We used our model to test a broad range of persistence switching dynamics and found that if periodic antibiotic dosing was tuned to biofilm dynamics, the dose required for effective treatment could be reduced by nearly 77%. The biofilm architecture and its response to antibiotics were found to depend on the dynamics of persister cells. Despite some differences in the response of biofilm governed by different persister switching rates, we found that a general optimized periodic treatment was still effective in significantly reducing the required antibiotic dose. As persistence becomes better quantified and understood, our model has the potential to act as a foundation for more effective strategies to target bacterial infections.


Assuntos
Bactérias , Infecções Bacterianas , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Biofilmes
9.
BMC Vet Res ; 20(1): 151, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643127

RESUMO

BACKGROUND: Numerous previous reports have demonstrated the efficacy of Lactic acid bacteria (LAB) in promoting growth and preventing disease in animals. In this study, Enterococcus faecium ZJUIDS-R1 and Ligilactobaciiius animalis ZJUIDS-R2 were isolated from the feces of healthy rabbits, and both strains showed good probiotic properties in vitro. Two strains (108CFU/ml/kg/day) were fed to weaned rabbits for 21 days, after which specific bacterial infection was induced to investigate the effects of the strains on bacterial diarrhea in the rabbits. RESULTS: Our data showed that Enterococcus faecium ZJUIDS-R1 and Ligilactobaciiius animalis ZJUIDS-R2 interventions reduced the incidence of diarrhea and systemic inflammatory response, alleviated intestinal damage and increased antibody levels in animals. In addition, Enterococcus faecium ZJUIDS-R1 restored the flora abundance of Ruminococcaceae1. Ligilactobaciiius animalis ZJUIDS-R2 up-regulated the flora abundance of Adlercreutzia and Candidatus Saccharimonas. Both down-regulated the flora abundance of Shuttleworthia and Barnesiella to restore intestinal flora balance, thereby increasing intestinal short-chain fatty acid content. CONCLUSIONS: These findings suggest that Enterococcus faecium ZJUIDS-R1 and Ligilactobaciiius animalis ZJUIDS-R2 were able to improve intestinal immunity, produce organic acids and regulate the balance of intestinal flora to enhance disease resistance and alleviate diarrhea-related diseases in weanling rabbits.


Assuntos
Infecções Bacterianas , Enterococcus faecium , Microbioma Gastrointestinal , Lactobacillales , Probióticos , Coelhos , Animais , Enterococcus faecium/fisiologia , Probióticos/uso terapêutico , Probióticos/farmacologia , Diarreia/prevenção & controle , Diarreia/veterinária , Infecções Bacterianas/veterinária , Imunidade
12.
BMC Genomics ; 25(1): 353, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594632

RESUMO

Mosquitoes are prolific vectors of human pathogens, therefore a clear and accurate understanding of the organization of their antimicrobial defenses is crucial for informing the development of transmission control strategies. The canonical infection response in insects, as described in the insect model Drosophila melanogaster, is pathogen type-dependent, with distinct stereotypical responses to Gram-negative bacteria and Gram-positive bacteria/fungi mediated by the activation of the Imd and Toll pathways, respectively. To determine whether this pathogen-specific discrimination is shared by mosquitoes, we used RNAseq to capture the genome-wide transcriptional response of Aedes aegypti and Anopheles gambiae (s.l.) to systemic infection with Gram-negative bacteria, Gram-positive bacteria, yeasts, and filamentous fungi, as well as challenge with heat-killed Gram-negative, Gram-positive, and fungal pathogens. From the resulting data, we found that Ae. aegypti and An. gambiae both mount a core response to all categories of infection, and this response is highly conserved between the two species with respect to both function and orthology. When we compared the transcriptomes of mosquitoes infected with different types of bacteria, we observed that the intensity of the transcriptional response was correlated with both the virulence and growth rate of the infecting pathogen. Exhaustive comparisons of the transcriptomes of Gram-negative-challenged versus Gram-positive-challenged mosquitoes yielded no difference in either species. In Ae. aegypti, however, we identified transcriptional signatures specific to bacterial infection and to fungal infection. The bacterial infection response was dominated by the expression of defensins and cecropins, while the fungal infection response included the disproportionate upregulation of an uncharacterized family of glycine-rich proteins. These signatures were also observed in Ae. aegypti challenged with heat-killed bacteria and fungi, indicating that this species can discriminate between molecular patterns that are specific to bacteria and to fungi.


Assuntos
Aedes , Infecções Bacterianas , Micoses , Animais , Humanos , Drosophila melanogaster , Mosquitos Vetores/genética , Aedes/genética , Aedes/microbiologia , Bactérias , Fungos/genética
13.
Front Immunol ; 15: 1354676, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638425

RESUMO

Circular RNAs (circRNAs) are a class of transcripts that often are generated by back-splicing that covalently connects the 3'end of the exon to the 5'end. CircRNAs are more resistant to nuclease and more stable than their linear counterparts. One of the well-recognized roles of circRNAs is the miRNA sponging effects that potentially lead to the regulation of downstream proteins. Despite that circRNAs have been reported to be involved in a wide range of human diseases, including cancers, cardiovascular, and neurological diseases, they have not been studied in inflammatory lung responses. Here, we analyzed the circRNA profiles detected in extracellular vesicles (EVs) obtained from the broncho-alveolar lavage fluids (BALF) in response to LPS or acid instillation in mice. Next, we validated two specific circRNAs in the BALF-EVs and BALF cells in response to endotoxin by RT-qPCR, using specific primers targeting the circular form of RNAs rather than the linear host RNAs. The expression of these selected circRNAs in the BALF inflammatory cells, alveolar macrophages (AMs), neutrophils, and lung tissue were analyzed. We further predicted the potential miRNAs that interact with these circRNAs. Our study is the first report to show that circRNAs are detectable in BALF EVs obtained from mice. The EV-cargo circRNAs are significantly altered by the noxious stimuli. The circRNAs identified using microarrays may be validated by RT-qPCR using primers specific to the circular but not the linear form. Future studies to investigate circRNA expression and function including miRNA sponging in lung inflammation potentially uncover novel strategies to develop diagnostic/therapeutic targets.


Assuntos
Infecções Bacterianas , Vesículas Extracelulares , MicroRNAs , Humanos , Animais , Camundongos , RNA Circular/genética , RNA Circular/metabolismo , Líquido da Lavagem Broncoalveolar , MicroRNAs/genética , MicroRNAs/metabolismo , Infecções Bacterianas/metabolismo , Vesículas Extracelulares/metabolismo
14.
ACS Appl Mater Interfaces ; 16(15): 18400-18410, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38576193

RESUMO

Drug-resistant bacterial infection and biofilm formation are the key inhibitors of wound healing, and new strategies are urgently needed to address these issues. In this study, we designed a pH-responsive co-assembled peptide hydrogel to inhibit Methicillin-resistant Staphylococcus aureus (MRSA) infection and promote wound healing. We synthesized a cationic short peptide (Nap-FFKKK) and a co-assembled hydrogel with curcumin at pH ∼ 7.8. The loaded curcumin was continuously released in a weak acid environment (pH ∼ 5.5). The lysine-rich cationic peptide inhibited biofilm formation in MRSA via electrostatic interaction with the negatively charged bacterial cell surface and, thus, provided a reinforcing antibacterial effect with curcumin. In vitro antibacterial experiments showed that the co-assembled system considerably reduced the minimum inhibitory concentration of curcumin against MRSA by 10-fold and promoted wound healing in a mouse model of MRSA-infected wounds. This study provides a simple and promising strategy to treat drug-resistant bacterial infections in wounds.


Assuntos
Infecções Bacterianas , Curcumina , Staphylococcus aureus Resistente à Meticilina , Infecção dos Ferimentos , Animais , Camundongos , Hidrogéis , Antibacterianos , Peptídeos , Cicatrização , Concentração de Íons de Hidrogênio
15.
Int Wound J ; 21(4): e14864, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619084

RESUMO

Multidrug-resistant (MDR) bacterial infections have become increasingly common in recent years due to the increased prevalence of diabetic foot ulcers (DFUs). We carried out a meta-analysis aimed at investigating the prevalence of MDR bacteria isolated from DFUs and analysing the risk factors for MDR bacterial infection in patients with DFUs. The PubMed/Medline, Web of Science, Embase, Cochrane Library, Ovid, Scopus, and ProQuest databases were searched for studies published up to November 2023 on the clinical outcomes of MDR bacteria in DFUs. The main outcome was the prevalence of MDR bacteria in DFUs. A total of 21 studies were included, representing 4885 patients from which 2633 MDR bacterial isolates were obtained. The prevalence of MDR bacteria in DFUs was 50.86% (95% confidence interval (CI): 41.92%-59.78%). The prevalence of MDR gram-positive bacteria (GPB) in DFUs was 19.81% (95% CI: 14.35%-25.91%), and the prevalence of MDR gram-negative bacteria (GNB) in DFUs was 32.84% (95% CI: 26.40%-39.62%). MDR Staphylococcus aureus (12.13% (95% CI: 8.79%-15.91%)) and MDR Enterococcus spp. (3.33% (95% CI: 1.92%-5.07%)) were the main MDR-GPB in DFUs. MDR Escherichia coli, MDR Pseudomonas aeruginosa, MDR Enterobacter spp., MDR Klebsiella pneumoniae, and MDR Proteus mirabilis were the main MDR-GNB in DFUs. The prevalence rates were 6.93% (95% CI: 5.15%-8.95%), 6.01% (95% CI: 4.03%-8.33%), 3.59% (95% CI: 0.42%-9.30%), 3.50% (95% CI: 2.31%-4.91%), and 3.27% (95% CI: 1.74%-5.21%), respectively. The clinical variables of diabetic foot ulcer patients infected with MDR bacteria and non-MDR bacteria in the included studies were analysed. The results showed that peripheral vascular disease, peripheral neuropathy, nephropathy, osteomyelitis, Wagner's grade, previous hospitalization and previous use of antibacterial drugs were significantly different between the MDR bacterial group and the non-MDR bacterial group. We concluded that there is a high prevalence of MDR bacterial infections in DFUs. The prevalence of MDR-GNB was greater than that of MDR-GPB in DFUs. MDR S. aureus was the main MDR-GPB in DFUs, and MDR E. coli was the main MDR-GNB in DFUs. Our study also indicated that peripheral vascular disease, peripheral neuropathy, nephropathy, osteomyelitis, Wagner's grade, previous hospitalization, and previous use of antibacterial drugs were associated with MDR bacterial infections in patients with DFUs.


Assuntos
Infecções Bacterianas , Diabetes Mellitus , Pé Diabético , Osteomielite , Doenças Vasculares Periféricas , Humanos , Pé Diabético/epidemiologia , Escherichia coli , Prevalência , Staphylococcus aureus , Antibacterianos , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/epidemiologia
16.
Open Vet J ; 14(1): 53-69, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38633195

RESUMO

Background: The high summer mortality in many fish farms, which had detrimental economic and social implications, was a serious challenge that the fish industry had to deal with. Aim: With an examination of the most effective antibiotic, the ongoing research was intended to shed light on the identification of the main bacterial pathogens associated with the summer mortality syndrome in the diseased farmed Nile tilapia. Methods: Six hundred dead Nile tilapia samples that had suffered from summer mortality were collected from several fish farms between May and October of 2022. The gathered fish displayed hemorrhagic areas on the skin, scale detachment, fin degeneration, erosions, skin ulcers, and corneal opacity with unilateral and/or bilateral exophthalmia. The most prominent internal appearance was swelling of the internal organs with sanguineous ascetic fluid. Results: There were 225 bacterial isolates found. Six species were identified through phenotypic and biochemical analysis; they were Aeromonas, Vibrio, Streptococcus, Pseudomonas, Enterococcus, and Edwardsiella spp., in descending percentage, respectively. Aeromonas spp., Vibrio spp., and Streptococcus spp. were the three most frequent isolated bacterial pathogens. The identification of Aeromonas hydrophila, Vibrio spp., and Streptococcus iniae, the three most common bacterial isolates, was confirmed by molecular analysis by polymerase chain reaction. Most of the tested strains were found to be responsive to Ciprofloxacin (CIP), Gentamicin (CN), and Chloramphenicol (C) but resistant to Amoxicillin (AMX), according to an antibiotic sensitivity test. Conclusion: The three most dangerous common bacterial infections discovered during mass-farmed tilapia summer mortality are A. hydrophil a, Vibrio sp., and S. iniae. This makes it clear that high water temperatures may raise the possibility of bacterial infections, which could cause widespread tilapia mortality and substantial financial losses. Therefore, it is crucial to maintain a beneficial fish culture, environment, and husbandry practices to enhance the tilapia-rearing environment and lessen the virulence of the disease. Isolated bacterial strains showed low levels of resistance to AMX but were vulnerable to CIP, CN, and C.


Assuntos
Infecções Bacterianas , Ciclídeos , Animais , Ciclídeos/microbiologia , Streptococcus , Antibacterianos , Virulência , Infecções Bacterianas/veterinária
17.
Molecules ; 29(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38611953

RESUMO

Bacterial virulence factors and biofilm development can be controlled by the quorum-sensing (QS) system, which is also intimately linked to antibiotic resistance in bacteria. In previous studies, many researchers found that quorum-sensing inhibitors (QSIs) can affect the development of bacterial biofilms and prevent the synthesis of many virulence factors. However, QSIs alone have a limited ability to suppress bacteria. Fortunately, when QSIs are combined with antibiotics, they have a better therapeutic effect, and it has even been demonstrated that the two together have a synergistic antibacterial effect, which not only ensures bactericidal efficiency but also avoids the resistance caused by excessive use of antibiotics. In addition, some progress has been made through in vivo studies on the combination of QSIs and antibiotics. This article mainly expounds on the specific effect of QSIs combined with antibiotics on bacteria and the combined antibacterial mechanism of some QSIs and antibiotics. These studies will provide new strategies and means for the clinical treatment of bacterial infections in the future.


Assuntos
Antibacterianos , Infecções Bacterianas , Humanos , Antibacterianos/farmacologia , Infecções Bacterianas/tratamento farmacológico , Percepção de Quorum , Biofilmes , Fatores de Virulência
18.
BMJ Paediatr Open ; 8(1)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38604769

RESUMO

OBJECTIVE: The objective was to assess the association between nutritional and clinical characteristics and quantitative PCR (qPCR)-diagnosis of bacterial diarrhoea in a multicentre cohort of children under 2 years of age with moderate to severe diarrhoea (MSD). DESIGN: A secondary cross-sectional analysis of baseline data collected from the AntiBiotics for Children with Diarrhoea trial (NCT03130114). PATIENTS: Children with MSD (defined as >3 loose stools within 24 hours and presenting with at least one of the following: some/severe dehydration, moderate acute malnutrition (MAM) or severe stunting) enrolled in the ABCD trial and collected stool sample. STUDY PERIOD: June 2017-July 2019. INTERVENTIONS: None. MAIN OUTCOME MEASURES: Likely bacterial aetiology of diarrhoea. Secondary outcomes included specific diarrhoea aetiology. RESULTS: A total of 6692 children with MSD had qPCR results available and 28% had likely bacterial diarrhoea aetiology. Compared with children with severe stunting, children with MAM (adjusted OR (aOR) (95% CI) 1.56 (1.18 to 2.08)), some/severe dehydration (aOR (95% CI) 1.66 (1.25 to 2.22)) or both (aOR (95% CI) 2.21 (1.61 to 3.06)), had higher odds of having likely bacterial diarrhoea aetiology. Similar trends were noted for stable toxin-enterotoxigenic Escherichia coli aetiology. Clinical correlates including fever and prolonged duration of diarrhoea were not associated with likely bacterial aetiology; children with more than six stools in the previous 24 hours had higher odds of likely bacterial diarrhoea (aOR (95% CI) 1.20 (1.05 to 1.36)) compared with those with fewer stools. CONCLUSION: The presence of MAM, dehydration or high stool frequency may be helpful in identifying children with MSD who might benefit from antibiotics.


Assuntos
Infecções Bacterianas , Disenteria , Criança , Humanos , Lactente , Pré-Escolar , Desidratação/complicações , Desidratação/tratamento farmacológico , Estudos Transversais , Diarreia/complicações , Diarreia/microbiologia , Disenteria/complicações , Disenteria/tratamento farmacológico , Antibacterianos/uso terapêutico , Transtornos do Crescimento/complicações , Transtornos do Crescimento/tratamento farmacológico
19.
Mol Biol Rep ; 51(1): 512, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622483

RESUMO

Bacterial enteritis has a substantial role in contributing to a large portion of the global disease burden and serves as a major cause of newborn mortality. Despite advancements gained from current animal and cell models in improving our understanding of pathogens, their widespread application is hindered by apparent drawbacks. Therefore, more precise models are imperatively required to develop more accurate studies on host-pathogen interactions and drug discovery. Since the emergence of intestinal organoids, massive studies utilizing organoids have been conducted to study the pathogenesis of bacterial enteritis, revealing new mechanisms and validating established ones. In this review, we focus on the advancements of several bacterial pathogenesis mechanisms observed in intestinal organoid/enteroid models, exploring the host response and bacterial effectors during the infection process. Finally, we address the features that warrant additional investigation or could be enhanced in existing organoid models in order to guide future research endeavors.


Assuntos
Infecções Bacterianas , Enterite , Animais , Intestinos/microbiologia , Bactérias , Organoides
20.
Mikrochim Acta ; 191(5): 241, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573377

RESUMO

The culture-based methods for viable Escherichia coli (E. coli) detection suffer from long detection time and laborious procedures, whereas the molecule tests and immune recognition technologies lack live/dead E. coli differentiation. Rapid, easy-to-use, and accessible viable E. coli detection is of benefit to bacterial infection diagnosis and risk warning of E. coli contamination of water and food, safeguarding human health. Herein, we propose a microwell chip-based solution to realize simple and rapid determination of viable E. coli. The vertical channel-well configuration is applied to develop the microwell array chip for increasing the microwell density (6200 wells/cm2), yielding a broad dynamic range from 103 to 107 CFU/mL. We incorporate an inducible enzyme assay with the developed chip and achieve the differentiation of live/dead E. coli within 4 h, significantly shortening the detection time from over 24 h in the standard method. By encapsulating single E. coli into microwells, the concentration of viable cells can be determined simultaneously through counting positive microwells. In addition, the air soluble PDMS that can store negative pressure for independent sample digitalization endows the developed chip with simple operation and less reliance on external equipment. With further developments for increasing the number of microwell and integrating more sample panels, the developed chip can become a useful tool for rapid viable E. coli enumeration with user-friendly operation, simple procedures, and accessibility in decentralized settings, thereby deploying this device for water and food safety monitoring, as well as clinical bacterial infection diagnosis.


Assuntos
Infecções Bacterianas , Escherichia coli , Humanos , Dimetilpolisiloxanos , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...